Shearlets on Bounded Domains
نویسندگان
چکیده
Shearlet systems have so far been only considered as a means to analyze L2-functions defined on R2, which exhibit curvilinear singularities. However, in applications such as image processing or numerical solvers of partial differential equations the function to be analyzed or efficiently encoded is typically defined on a non-rectangular shaped bounded domain. Motivated by these applications, in this paper, we first introduce a novel model for cartoon-like images defined on a bounded domain. We then prove that compactly supported shearlet frames satisfying some weak decay and smoothness conditions, when orthogonally projected onto the bounded domain, do provide (almost) optimally sparse approximations of elements belonging to this model class.
منابع مشابه
Directional Anisotropic Multiscale Systems on Bounded Domains
Driven by an overwhelming amount of applications numerical approximation of partial differential equations was established as one of the core areas in applied mathematics. During the last decades a trend for the solution of PDEs emerged, that focuses on employing systems from applied harmonic analysis for the adaptive solution of these equations. Most notably wavelet systems have been used and ...
متن کاملSolution of Thermo-Fluid problems in Bounded Domains via the Numerical Panel Method
The classical panel method has been extensively used in external aerodynamics to calculate ideal flow fields around moving vehicles or stationary structures in unbounded domains. However, the panel method, as a somewhat simpler implementation of the boundary element method, has rarely been employed to solve problems in closed complex domains. This paper aims at filling this gap and discusses th...
متن کاملA Shearlets-based Edge Identification Algorithem for Infrared Image
A shearlets-based edge identification algorithem for infrared image is proposed. The algorithem demonstrates the performance of edge detection based on shearlets, combines with the edge hysteresis thresholding, designs steps of edge detection, which is proper to use in infrared images.Simultaneously, with the advantage of edge geometric features provided by the shearlets, infrared image were ex...
متن کاملLinearized Riesz transform and quasi-monogenic shearlets
The only quadrature operator of order two on L2(R) which covaries with orthogonal transforms, in particular rotations is (up to the sign) the Riesz transform. This property was used for the construction of monogenic wavelets and curvelets. Recently, shearlets were applied for various signal processing tasks. Unfortunately, the Riesz transform does not correspond with the shear operation. In thi...
متن کاملp-adic Shearlets
The field $Q_{p}$ of $p$-adic numbers is defined as the completion of the field of the rational numbers $Q$ with respect to the $p$-adic norm $|.|_{p}$. In this paper, we study the continuous and discrete $p-$adic shearlet systems on $L^{2}(Q_{p}^{2})$. We also suggest discrete $p-$adic shearlet frames. Several examples are provided.
متن کامل